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The correlation of unsteady-state heat transfer 
data from a sterilizing oven 
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Data, showing the pattern of temperature rise in articles undergoing 
sterilization in an oven under normal working conditions, have been 
studied. Simple mathematical models, each expressed in terms of a set 
of differential equations rather than in an explicit analytical form, 
have been fitted to these data, and the quality of fit and possible 
applications are here discussed. 

To achieve satisfactory sterilization by dry heat it is necessary to heat all parts of an 
article up to a required (minimum) temperature and to maintain this temperature 
for a specified period (for example 160°C for 1 hour : British Pharmacopoeia, 1968). 
Articles to be sterilized are usually stacked in containers in an oven, which is then 
brought to a temperature above the required minimum. The temperature of the 
articles themselves rises more slowly, and it is essential to allow sufficient time for 
the innermost parts to reach the requisite temperature. The heating time may be 
long, especially if the maximum oven temperature must be severely restricted, due 
for example to thermal instability of the materials undergoing treatment. 

In principle the heating time may be predicted if one has a knowledge of the heat- 
transfer coefficients at all surfaces under the prevailing conditions, of the system 
geometry, and of the thermal conductivity and specific heat of the materials involved. 
Heat transfer coefficients are classically measured by setting up a steady-state experi- 
ment, in which the quantity of heat passing through a surface is determined under a 
constant temperature difference. The apparatus and technique for these measure- 
ments can be complex, and the results are dependent on conditions including the 
fluid flow pattern prevailing. In a sense, too, these measurements are intrinsically 
artificial, in that the experimental apparatus may differ substantially from the practical 
configuration, and the relation between the two may be open to debate. 

Given the heat transfer coefficients and other requisite data, the problem of pre- 
dicting the temperature-time profile for an article may be solved analytically only for 
relatively simple geometrical shapes and for a simple pattern of change in the environ- 
mental temperature. Even with substantial simplifying assumptions analytical 
solutions for particular cases can be extremely complicated (Jaeger, 1945 ; Carslaw 
& Jaeger, 1959), and in most cases a numerical solution is required. 

In the work outlined here, an attempt has been made to explore an alternative 
approach to the unsteady-state heat transfer problem. Temperature-time records 
from an actual sterilization have been examined and mathematical models fitted to 
them. The models so fitted contain implicitly the heat transfer coefficients and other 
system properties, although it may not be possible to separate the various quantities 
contributing to the overall behaviour of the system. 
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EXPERIMENTAL 

The hot-air oven was an electrically-heated, fan-circulated Barlow-Whitney type 
E3/232S with internal dimensions 96 cm high, 61 cm wide, and 56 cm deep. This 
was packed with a typical load of articles for sterilization, as shown in Fig. 1. The 
lower shelf carried tubes and pipettes ; the two upper shelves each carried four tin- 
plate boxes packed with glass Petri dishes. The temperature recordings used were 
taken at 1 min intervals from each of three thermocouples, respectively (a) midway 
between the four tins on the top shelf, (b) in the air space at the centre of one of these 
tins, and (c) in the middle of a Petri dish in the same tin. 

8. i n  
oven air-space 

-Thermocouple €Ib at mid- 
point of tin, between 
dish stacks 

-Thermocouple BC at centre 
of a Petri dish 

-Front t i n  shown removed 

Wire mesh shelves, 
supporting tins, not 
shown 

-Bottom wire mesh shelf, 
carrying pipettes etc. 

and heaters 

FIG 1 .  Diagram of the oven and its load, showing the positions of thermocouples. 

Mathematical treatment 
Let O,, el, 0, be respectively the temperatures of the air surrounding a tin, of the 

metal wall of the tin itself, and of the air inside the tin, each assumed to be approxi- 
mately uniform over the surface. From the definition of a heat transfer coefficient : 

Heat transfer to tin = h,, A,, (O,-O,) 

Heat transfer from tin = h,, A,, (0,-0,) 
and 

where h,,, h,, are the local heat transfer coefficients at the inner and outer surfaces and 
A,,, A,, are the external and internal surface areas of the tin, respectively. 
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A net heat gain by the tin will result in a rise in its temperature el, thus : 

or 

where C, is the heat capacity of the tin, and 
pol, p l z  are respectively the products h01A01,h12A1~. 

The heat transfer to the payload of Petri dishes presents a more complicated 
problem, since this is thick in the direction of heat flow. A reasonably rigorous 
treatment would require a stack of dishes to be regarded as a distributed heat-transfer 
stage, considering it as an infinite set of isothermal, coaxial laminae, each receiving 
heat from the lamina without, passing heat to that within, and increasing in tempera- 
ture as a result of the difference; such a treatment would present difficulties due to the 
relatively complicated shape of the dishes, and would itself disregard asymmetry due 
to the way the stacks were packed. 

A simpler approach is to treat the stack of dishes as a finite number of discrete, 
notionally-coaxial elements, which behave as the laminae referred to above, and are 
each supposedly at a uniform temperature at any instant. Such a model has charac- 
teristics which approach those of the distributed stage as the number of elements is 
increased. In the present exercise, only the two simplest forms from this set of 
possible models have been used. 
Model A. This is the grossest possible simplification; the stack of Petri dishes is 
treated as a single element, at a uniform temperature at any instant. If this has heat 
capacity C3 and the temperature is 8, an equation analogous to (2) may be obtained 

(3) 

Since the air contained in the tin is of negligible heat capacity the rate at which heat 
leaves the inner surface of the tin must equal that at which it enters the Petri dishes, 
thus : 

or 
p12(el-eZ) = p23(e2-e3) * . .. .. * .  (4) 

.. .. .. P12'1 + PZ3'3 

PlZ + P23 
e2 = 

Model B. The stack of dishes is treated as composed of two elements, an outer 
(denoted by subscript 3') and an inner (subscript 4). The heat transfer equations are : 

.. .. . .  - * (8) 
PIZel + P23Ie3' e2 = 

PlZ + P23' 
These two models are represented in block diagram form in Figs 2 and 3. 
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FIG. 2. 
values O,, 0,. 

Block diagram of model A. The temperatures 02, 0, were compared with the lobserved 

Considering the problem in terms of model A, it is possible to solve numerically 
the set of equations (2), (3) and (5) which represents this model, provided that the 
initial temperatures and the coefficients C,p are available and the oven air tempera- 
ture 8, is known as a function of time. The solution may be presented in the form of 
graphs of el, 02, 8, against time. The profiles of 02, 8, will resemble the observed 
pattern of change of 8 b ,  oc to a greater or lesser degree according to the values of p 
used. 

Both model A and model B have been simulated in this way, using smoothed 
values of the observed air temperatures 8, as 8, and optimizing the vectors p to give 
a best fit, in the least-squares sense, of the models to the observed results. The 
optimization consisted of minimizing the function 

for model A, or the corresponding function with 8, replaced by 8, in the case of 
model B. 

The optimization algorithm used was that due to Coggan (1967), based on work 
by Davidon (1959) and by Fletcher & Powell (1963). The differential equations 
were solved by Gill's modification of the Runge-Kutta method. The choice of these 
methods was made primarily on grounds of availability ; a general discussion of the 
treatment of problems of this type has been presented by Rosenbrock and Storey 
(1966). 

In the fitting of model A the parameters pol, pI2,  and p23 were optimized without 
constraint. To simplify the fitting of model B, the ratio pl2/pOl was arbitrarily fixed 
at 1.6 (the ratio optimal for model A) ; the payload of Petri dishes was treated as 70% 
outer element, 30% inner element, corresponding roughly to the outer flanged portions 
and the inner flat portions respectively (Fig. 4). Thus C3, = 0.7 C, and C, = 0-3 C3. 
With these arbitrary simplificationsp,,, p23, andp,, were optimized without constraint. 

RESULTS A N D  D I S C U S S I O N  

The time: temperature profiles for the two fitted models A and B are shown in 
Figs 5 and 6. The observed temperatures 8, and 8, are shown for comparison, 
represented by broken lines. 

The simpler model (A) represents the observed behaviour within about 5°C over 

Oven air  17 Air in box 11 11 

FIG. 3. Block diagram of model B. The temperatures O,, Oa were compared with the observed 
values Oa, Oc. 
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FIG. 4. The two-element model B visualized in terms of a partitioned Petri:dish. 

the entire range. The observed innermost temperature BC rises later and more 
rapidly than the fitted model ; this is the difference to be expected from an attempt to 
represent a distributed stage by a single exponential transfer stage. The two-element 
model (B) represents the observed behaviour much more closely-within about 2°C 
over the entire range. The systematic differences between observations and model 
still take the same form but are less marked. 

The principal numerical data and results are presented in Table 1. It may be 
noted that the heat capacity of the tinplate container is very much less than that of 

Table 1. Numerical data and results 

Tinplate box : dimensions, cm. 22.0 x 23.3 x 25.4 high 
surface area, cm2 3220 
weight, g 923 

102 
Petri dishes : dimensions, cm. 

weight, g 153 
number in box 48 
estimated heat capacity per 
box, C, cal "C-l 1490 

estimated heat capacity Cl cal OC-' 
10.2 dia. x 1.8 high 

Model A 
Heat capacity coefficients for elements 

of dish stacks : 
outer, C; cal "C-' - 
inner, C4 cal "C-' - 

Values of fitted heat transfer 
parameters, cal min-l OC-' 
Po1 31.5 
P12 50.5 

71.1 Pza or ~ z a '  
Pa'4 

surface of box, 
cal min-' 'C-l 
outside h,, 0.0098 
inside h12 0.016 {k+k>-' 0.0060 

Overall coefficient, 
Chu h-' ft-2 OC-l 7.4 

Residual variance of inner 
air temperature 
about fitted 4, "C2 0.40 

Corresponding standard 
deviation, "C 0.63 

Residual variance of dish 
centre temperature 

Corresponding standard 

- 
Heat transfer coefficients at 

about fitted 0, or O,, OC2 9.91 

deviation, "C 3.15 

Model B 

1043 
447 

32.5 
52.0 

137.0 
33.7 

(0.0 10) 
(0.016) 
0.0062 

7.6 

1.81 

1-34 

2.14 

1 *46 
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the payload of Petri dishes inside it, and a consequence of this was apparent in the 
process of fitting model A. The values of the individual parameters pol, p12, con- 
taining the heat transfer coefficients hol, hl, for the outer and inner surfaces of the tin, 
were clearly much less important than the overall resistance to heat transfer from the 
outside to the inside of the tin, represented by the overall coefficient in the table. 
This observation led to the arbitrary decision to fix the ratio pOl/pl2 when fitting 
model B. 

A surprising and as yet unexplained result is that the inner air temperature 8, was 
less well represented by model B than by model A. This may be the result of an 
imperfection of the fitting process rather than of more fundamental origin. As was 
noted earlier the fitting process used was selected for availability and convenience 
rather than for fundamental suitability for this purpose. The minimization pro- 
cedure used had proved highly reliable in previous applications and converged well 
in initial tests with artificial data. Model A was fitted without excessive difficulty, 
but with model B convergence was less satisfactory and some attempts with models of 
this type failed. For this reason more complicated models have not yet been tried. 

Conclusions 
The practicability has been demonstrated of fitting relatively simple mathematical 

models to experimental data for a system undergoing sterilization under practical 
conditions. The models obtained, expressed as a set of simultaneous linear differ- 
ential equations which contain the heat transfer coefficients in their parameters, yield 
estimates of these heat-transfer coefficients as a by-product. 

The applicability of this approach to design is a matter of conjecture, but it seems 
probable that correlations obtained in this way, from data for various combinations 
of sterilizing oven, packing or payload, could be used to predict the behaviour of 
further, different combinations. Such a treatment might offer practical advantages 
over either more conventional methods of prediction or a purely empirical approach. 
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FIG. 5.  

8, 
0,  Observed inner air temperature. 
O C  Observed dish-centre temperature. 

0, Temperature of tinplate container, from model. 
8, Inner air temperature, from model (comparable with 8 b ) .  

OS Dish temperature from model (comparable with Oc). 

FIG. 6. Time-temperature profiles for model B. 

Oa, Temperature of dish outer element, from model. 
Oa Temperature of dish inner element, from model (comparable with Oc), 

Time-temperature profiles for model A. 

Oven air temperatures-smoothed observed values from thermocouple 8,. 
Broken lines: 

Continuous lines: 

Continuous lines: 

All other details are as for FIG. 5,  above. 
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